Skip to main content

4WD Rover

Flying a model plane in the desert is difficult.  There is sand laden wind during the day, so one can only fly at night and then one cannot see the plane properly.  So I decided to make a little runabout.

A runabout robot uses much the same parts as a plane.  An aircraft RC system is used for backup and test and the autopilot is the same, just with a different ArduRover software load. Details here http://rover.ardupilot.com/

Where to get the parts

Pololu.com sells a range of motor speed controllers with various control inputs.  The Easy series has linear, digital and RC control inputs.  It can also blend two RC channels for differential control.  This way, one can make a 4WD robot chassis, using the Throttle channel for speed control and the Rudder channel for direction.  The blending will add or subtract the two channels such that the left/right will speed up or slow down the one side slightly, to make the model turn.

I picked the 18V 15A speed controller http://www.pololu.com/catalog/product/1376

Pololu also has geared motors and wheels to match http://www.pololu.com/catalog/category/51

So, I picked up a wood bread board at Carrefour, epoxy glued four geared motors with 50 by 120mm wheels to it and la voila, a 4WD Rover!


The advantage of using a wood bread board as the base, is that one can easily screw and glue things to it.  A metal chassis is much more difficult to work with and costs a whole lot more.

Here is the Schematic of the RC motor control - to test and configure the speed controllers before the autopilot is added to the mix.


Ultimately, I want to add a short range proximity sensor on each corner to protect the wheels and avoid banging into things, as well as a camera and range finder on a pan/tilt swivel for distant obstacle/object detection.  Jameco.com sells a range of pan/tilt swivels and robot grippers, that will be handy for this project http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2144518_-1

Video

To process video/stills, one would need OpenCV, which is beyond the capability of an Arduino auto pilot.  A Texas Instruments Beaglebone Black running at 1 GHz (or an old netbook computer) may be a better platform for that, so ultimately I can see the Arduino going out the window http://beagleboard.org/Products/BeagleBone%20Black

Motor Control

The Pololu motor controller user guide is here http://www.pololu.com/docs/pdf/0J44/simple_motor_controllers.pdf

In the guide on pages 15 and 16 it explains where to get the software required to configure the motor controllers.  The default configuration is for analogue inputs, which means that the speed controllers won't work by default - you have to configure them.

The software is available from here http://www.pololu.com/file/download/smc-windows-121204.zip

I tried the Linux version first, but it requires some non-existent libraries, so then I tried Windows on Virtualbox on my Mac and then found that I cannot yield control of the USB port to Windows since something in the Mac grabs control of it.  Therefore, I dug out my old Linux netbook and installed the Windows software all over again on XP.  This time it worked.

Clicking around a bit, I found the RC settings and configured the one controller as Mix Left and the other as Mix Right.  I also disabled the 'motor safe start' since I am not sure how it will work in practise and I don't want to ever run this program again just to reset the controllers.

When testing motors, put the machine on a couple of Sparkfun component boxes, to keep it from running away.

Test run

Once I got the controllers configured for RC, I gave things a try and the magic smoke didn't escape, but the controls were 90 degrees out, so I had to swap channels 3 and 4 around.

Overall, this seems to be a good rover platform that can zoom around at a decent walking speed.


Comments

Popular posts from this blog

Parasitic Quadrifilar Helical Antenna

This article was reprinted in OSCAR News, March 2018:  http://www.amsat-uk.org If you want to receive Satellite Weather Pictures , then you need a decent antenna, otherwise you will receive more noise than picture. For polar orbit satellites, one needs an antenna with a mushroom shaped radiation pattern .  It needs to have strong gain towards the horizon where the satellites are distant, less gain upwards where they are close and as little as possible downwards, which would be wasted and a source of noise.  Most satellites are spin stabilized and therefore the antenna also needs circular polarization, otherwise the received signal will flutter as the antennas rotate through nulls. The helical antenna, first proposed by Kraus in 1948, is the natural solution to circular polarized satellite communications.  It is a simple twisted wire - there seems to be nothing to it.  Various papers have been published on helix antennas, so the operation is pretty well ...

Unlock CRA PDF Forms

Unlock Canada Revenue Agency PDF Forms It appears that there is a relatively new PDF feature to prevent casual copying and saving of a file and that some programs save PDF files with these foolish features active by default.  Many forms from the Canada Revenue Agency are locked in this way, which makes it difficult to do one's taxes, since one can fill the form, but cannot save it.  One can only print the form.  It should be possible to print to a file or export it to a new PDF file, but it is far better to reset the annoying anti-taxpayer flags, since the 'printed' form cannot be edited easily any more and I always manage to make a mistake or three that need to be corrected after review. If there is a Linux (virtual) machine handy, install qpdf and use it to reset the silly flags: $ su - password # dnf update # dnf install qpdf # exit $ qpdf --decrypt lockedfile.pdf unlockedfile.pdf One doesn't need a password to unlock these flags, so the fix is instant. La voila! He...

To C or not to C, That is the Question

As most would know, the Kernighan and Ritchie C Programming Language is an improved version of B, which is a simplified version of BCPL, which is derived from ALGOL, which is the Ur computer language that started the whole madness, when Adam needed an operating system for his Abacus, to count Eve's apples in the garden of Eden in Iraq.  The result is that C is my favourite, most hated computer language , which I use for everything. At university, I learned FORTRAN with punch cards on a Sperry-Univac, in order to run SPICE, to simulate an operational amplifier.  Computers rapidly lost their glamour after that era! Nobody taught me C.  I bought the book and figured it out myself. Over time, I wrote a couple of assemblers, a linker-locator, various low level debuggers and schedulers and I even fixed a bug in a C compiler - not because I wanted to, but because I had to, to get the job done!   Much of my software work was down in the weeds with DSP and radio modems...