Skip to main content

Free and Open Systems - Free and Open Minds

The power of marketing, advertising and glossy brochures subtly warp people's minds to wherever advertising Dollars go.  This affects Free and Open embedded operating system software as well.  

Users visit a software company web site that showcases a new software feature and they don't realize that the "new feature" is 30 years old and exists in numerous other systems also

Some people do not understand that there is a large corpus of almost identical operating systems known as UNIX-like or POSIX compatible operating systems and that they can use any one of them and port their software between them, without shedding too many tears.

Embedded OS selection criteria should therefore not concentrate on perceived feature differences, but rather on availability:  Copyrights, Patents, Licensing and Export Permits.

This is especially important in small countries which are subject to the political whims of the big five, who can make you wait indefinitely for an export permit and delay your projects.

POSIX

The Portable Operating System Interface (POSIX) is a family of standards specified by the IEEE Computer Society for maintaining compatibility between operating systems.  https://standards.ieee.org/develop/wg/POSIX.html 

This corpus of more or less POSIX compatible embedded operating systems include some big names:
Linux, BSD, Darwin, VxWorks, PikeOS, LynxOS, Integrity-178 and several lesser known ones.  

Each of the better known ones are also divided into several lesser known distributions.  For example, there are two types of VxWorks, three types of Apple Mac OS and four or more types of BSD.

Shared Packages

These POSIX operating systems share an enormous library of software.  About 25 000 shared packages are listed in the FreeBSD repositories. https://www.freebsd.org/developers/cvs.html 

The actual differences between these operating systems are very subtle and are mostly a matter of who you go to for support, not technicalities, since they all share the same 25 000 packages, while the differences are only the OS kernels.
If any distribution would develop a new security feature or performance improvement, then that idea will get copied/included by everybody else in due course.  

Some features that are now in the news, such as ‘partitioning’ was first developed by BSD, decades ago - called Jails.  https://www.freebsd.org/doc/handbook/jails-build.html  

Ditto for hypervisors such as Qemu, KVM, VMware and others which have been around for decades.

All the abovementioned versions of UNIX can do partitioning and hypervisors.  Partitioning isn’t unique to VxWorks or PikeOS - they are just marketing it.  

The PikeOS microkernel isn’t unique either - Apple OSX and Darwin also use the Mach kernel.  It makes these systems a little slower, so microkernels are not popular in general purpose computing.  https://www.gnu.org/software/hurd/microkernel/mach/history.html 

Certifications

Another issue is certification by various authorities, for example DO-178B.  
It is clear that if for example VxWorks, LynxOS, PikeOS or Integrity-178 is certified to a standard, then by extension, BSD also benefits of the software reviews, since they share the same 25 000 base packages.

Regulation-Free Software

When building embedded systems, it is important to avoid using parts and equipment that are encumbered by overbearing regulations such as ITAR. https://www.pmddtc.state.gov/regulations_laws/itar.html 

VxWorks and PikeOS are both encumbered by licenses and permits that are hard to obtain. http://www.windriver.com/support/license-help/  https://www.sysgo.com/company/legal/#tab_c493_ 

However, all versions of Linux and BSD are free of encumbrances and are known as Free and Open software.  https://www.fsf.org/about 

 

Hardware Support

Of all the above UNIX-like operating systems, Linux currently has the widest hardware support and Apple OSX the most limited hardware support. 

Style, is the ability to distinguish quality, 
without having to look at the price tag.

Windriver VxWorks became a popular embedded OS when they added the BSD network stack to VRTX and declared that “VRTX now Works".  

WindRiver also has their own embedded Linux distribution since about 2008.  http://www.windriver.com/products/linux/ 

Escape From Export Permit Alcatrez

Therefore, it is entirely possible to install an embedded version of BSD or Linux on a CPU card and port software over from an encumbered embedded OS such as VxWorks, LynxOS or Integrity-178, thus avoiding all the licensing and permit issues.  https://www.freebsd.org/doc/en_US.ISO8859-1/articles/nanobsd/article.html

Similarly one could port software from an encumbered version of PikeOS over to Apple's Darwin, which also has a microkernel.  http://www.puredarwin.org/ 

In Search of Excellence

One day when another OS version has a new feature that is in fashion, then the software can be ported over again.  That is the whole purpose of the POSIX standard.  

The user isn’t captive to any one system or provider and wasting time on obtaining licenses and permits from an unco-operative country isn’t at all necessary.

. -.-. .-. .- ... . --..  .-.. .  .. -. ..-. .- -- .

Herman

Comments

Popular posts from this blog

Parasitic Quadrifilar Helical Antenna

This article was reprinted in OSCAR News, March 2018:  http://www.amsat-uk.org If you want to receive Satellite Weather Pictures , then you need a decent antenna, otherwise you will receive more noise than picture. For polar orbit satellites, one needs an antenna with a mushroom shaped radiation pattern .  It needs to have strong gain towards the horizon where the satellites are distant, less gain upwards where they are close and as little as possible downwards, which would be wasted and a source of noise.  Most satellites are spin stabilized and therefore the antenna also needs circular polarization, otherwise the received signal will flutter as the antennas rotate through nulls. The helical antenna, first proposed by Kraus in 1948, is the natural solution to circular polarized satellite communications.  It is a simple twisted wire - there seems to be nothing to it.  Various papers have been published on helix antennas, so the operation is pretty well understood. Therefore,

Patch Antenna Design with NEC2

The older free Numerical Electromagnetic Code version 2 (NEC2) from Lawrence Livermore Lab assumes an air dielectric.  This makes it hard (but not impossible) for a radio amateur to experiment with Printed Circuit Board Patch antennas and micro strip lines. Air Spaced Patch Antenna Radiation Pattern You could use the free ASAP simulation program , which handles thin dielectrics, you could shell out a few hundred Dollars for a copy of NEC4 , You could buy GEMACS if you live in the USA, or you could add distributed capacitors to a NEC2 model with LD cards (hook up one capacitor in the middle of each element.), but that is far too much money/trouble for most. More information on driving an array antenna can be found here: https://www.aeronetworks.ca/2019/03/driving-quad-patch-array-antenna.htm l Air Dielectric Patch   The obvious lazy solution is to accept the limitation and make an air dielectric patch antenna. An advantage of using air dielectric, is that the antenn

Weather Satellite Turnstile Antennas for the 2 meter Band

NEC2, 2 m band, 146 MHz, Yagi Turnstile Simulation and Build This article describes a Turnstile Antenna for the 2 meter band, 146 MHz amateur satcom, 137 MHz NOAA and Russian Meteor weather satellites.  Weather satellite reception is described here .  A quadrifilar helical antenna is described here .   Engineering, is the art of making what you need,  from what you can get. Radiation Pattern of the Three Element Yagi-Uda Antenna Once one combine and cross two Yagis, the pattern becomes distinctly twisted. The right hand polarization actually becomes visible in the radiation pattern plot, which I found really cool. Radiation Pattern of Six Element Turnstile Antenna Only a true RF Geek can appreciate the twisted invisible inner beauty of a herring bone antenna... Six Element Turnstile Antenna Essentially, it is three crosses on a stick.  The driven elements are broken in the middle at the drive points.  The other elements can go straight throug